- process state: the stage of execution that a process is in. It is these states which determine which processes are eligible to receive CPU time.
- Process Control Block
All of the information needed to keep track of a process when switching is kept in a data package called a process control block. The process control block typically contains:
An ID number that identifies the process
Pointers to the locations in the program and its data where processing last occurred
Register contents
States of various flags and switches
Pointers to the upper and lower bounds of the memory required for the process
A list of files opened by the process
The priority of the process
The status of all I/O devices needed by the process
Each process has a status associated with it. Many processes consume no CPU time until they get some sort of input. For example, a process might be waiting for a keystroke from the user. While it is waiting for the keystroke, it uses no CPU time. While it's waiting, it is "suspended". When the keystroke arrives, the OS changes its status. When the status of the process changes, from pending to active, for example, or from suspended to running, the information in the process control block must be used like the data in any other program to direct execution of the task-switching portion of the operating system.
This process swapping happens without direct user interference, and each process gets enough CPU cycles to accomplish its task in a reasonable amount of time. Trouble can begin if the user tries to have too many processes functioning at the same time. The operating system itself requires some CPU cycles to perform the saving and swapping of all the registers, queues and stacks of the application processes. If enough processes are started, and if the operating system hasn't been carefully designed, the system can begin to use the vast majority of its available CPU cycles to swap between processes rather than run processes. When this happens, it's called thrashing, and it usually requires some sort of direct user intervention to stop processes and bring order back to the system.
One way that operating-system designers reduce the chance of thrashing is by reducing the need for new processes to perform various tasks. Some operating systems allow for a "process-lite," called a thread, that can deal with all the CPU-intensive work of a normal process, but generally does not deal with the various types of I/O and does not establish structures requiring the extensive process control block of a regular process. A process may start many threads or other processes, but a thread cannot start a process.
So far, all the scheduling we've discussed has concerned a single CPU. In a system with two or more CPUs, the operating system must divide the workload among the CPUs, trying to balance the demands of the required processes with the available cycles on the different CPUs. Asymmetric operating systems use one CPU for their own needs and divide application processes among the remaining CPUs. Symmetric operating systems divide themselves among the various CPUs, balancing demand versus CPU availability even when the operating system itself is all that's running. - In computer science, a thread of execution results from a fork of a computer program into two or more concurrently running tasks. The implementation of threads and processes differs from one operating system to another, but in most cases, a thread is contained inside a process. Multiple threads can exist within the same process and share resources such as memory, while different processes do not share these resources.
On a single processor, multithreading generally occurs by time-division multiplexing (as in multitasking): the processor switches between different threads. This context switching generally happens frequently enough that the user perceives the threads or tasks as running at the same time. On a multiprocessor or multi-core system, the threads or tasks will generally run at the same time, with each processor or core running a particular thread or task. Support for threads in programming languages varies: a number of languages simply do not support having more than one execution context inside the same program executing at the same time. Examples of such languages include Python, and OCaml, because the parallel support of their runtime support is limited by the use of a central lock, called "Global Interpreter Lock" in Python, "master lock" in Ocaml. Other languages may be limited because they use threads that are user threads, which are not visible to the kernel, and thus cannot be scheduled to run concurrently. On the other hand, kernel threads, which are visible to the kernel, can run concurrently.
Many modern operating systems directly support both time-sliced and multiprocessor threading with a process scheduler. The kernel of an operating system allows programmers to manipulate threads via the system call interface. Some implementations are called a kernel thread, whereas a lightweight process (LWP) is a specific type of kernel thread that shares the same state and information.
Programs can have user-space threads when threading with timers, signals, or other methods to interrupt their own execution, performing a sort of ad-hoc time-slicing.
Thursday, July 16, 2009
the concept of Process
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment